什么是反函数

一般地,设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的 反函数,记作y=f^(-1)(x) 。

什么是反函数

文章插图
  • 拓展资料:反函数的性质:
【什么是反函数】(1)函数f(x)与它的反函数f -1(x)图象关于直线y=x对称;
(2)函数存在反函数的 充要条件是,函数的 定义域与 值域是 一一映射; 
(3)一个函数与它的反函数在相应 区间上 单调性一致; 
(4)大部分 偶函数不存在反函数(当函数y=f(x), 定义域是{0} 且 f(x)=C (其中C是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{C}, 值域为{0} ) 。 奇函数不一定存在反函数,被与y轴垂直的直线截时能过2个及以上点即没有反函数 。 若一个奇函数存在反函数,则它的反函数也是奇函数 。  
(5)一段连续的函数的单调性在对应区间内具有一致性; 
(6)严增(减)的函数一定有严格增(减)的反函数; 
(7)反函数是相互的且具有唯一性; 
(8)定义域、值域相反对应法则互逆(三反); 
(9)反函数的 导数关系:如果x=f(y)在开区间I上严格单调,可导,且f'(y)≠0,那么它的反函数y=f -1(x)在区间S={x|x=f(y),y∈I }内也可导;
(10)y=x的反函数是它本身 。

无相关信息

    推荐阅读