基于SOPC技能的车辆电子后视镜系统设计

随着电子技术的发展,许多智能化技术被广泛应用到车辆上,车辆后视镜系统作为重要的安全辅助装置也经历了几代的技术发展[1] 。目前车辆后视镜系统出现了两种新技术:后视摄像和倒车雷达 。前者图像直观、真实,但无法给出精确的距离;后者能精确地测量距离,但对于车后方的水坑、凸出的钢筋等无法做出反映,因此存在安全上的死角[2][3] 。车辆上的雷达测距有以下几种:激光测距、微波测距和超声波测距 。前两者测量距离远、测量精度高,但成本很高;后者成本低,但测距范围通常小,在倒车速度稍快时安全性不佳 。
本文提出了一种基于SOPC 技术的车辆电子后视镜系统,该系统可以实时显示车辆后方的图像,并利用双频超声波实现了10m 以上的大范围测距,同时该系统具有语音播报测量结果及报警等功能 。1 系统特点
本系统与其它电子倒车系统相比有以下特点:(1)采用40kHz 和25kHz 两种频率的超声波测距,既扩大了测量范围又能兼顾小范围测距时的测量精度 。(2)采用3.5吋彩色液晶屏在实时、直观地显示车辆后方图像的同时,又可显示障碍物的距离及车辆相对于障碍物的速度等 。(3)语音播报测距结果及报警 。利用语音芯片ISD4002实现测距结果的语音播报,同时根据测量结果及车辆相对于障碍物的速度自动评估危险等级,并用急促程度不同的提示音示警 。(4)采用SOPC实现系统设计,具有很好的灵活性 。2 硬件电路设计
2.1 系统硬件结构
车辆电子后视镜系统的电路框图如图1所示 。整个系统可划分为图像采集及转换、图像及信息显示、超声波测距、语音播报及警告、温度测量等部分 。CMOS图像传感器OV6620将采集到的图像数据送到FPGA中,处理后得到RGB888格式的数据,经LCD控制电路送往LCD屏上显示 。超声波测距电路共有左右两个通道,利用频率为40kHz和25kHz两种超声波脉冲测量障碍物的距离及车辆的相对速度,随后进行危险评估再将相关的信息显示在LCD 屏上,并播报距离测量结果,然后控制报警电路发出急促程度不同的警示音 。
图1 系统硬件结构框图
1.   2.2 主要功能模块的设计
2.   2.2.1 图像采集及转换电路
图像采集及转换电路的框图如图2所示 。图像传感器OV6620 输出的YCrCb4:2:2 格式的数据经解交织电路转换为YCrCb4:4:4 格式数据,送给色彩空间转换电路完成数据格式转换,然后存入缓冲RAM中 。下面重点介绍色彩空间转换电路 。
图像传感器ov6620输出的是YCrCb4:2:2 格式的数据,而设计中所使用的lcd屏要求输入RGB888格式的数据,因此需要色彩空间转换电路完成这种转换 。转换公式如式(1)所示 。
转换结果中的RGB都是8位无符号数,取值范围为0~255,因此运算结果为负数的取0; 运算结果超过255 的取255 。这样会引入误差,但对图像的显示影响并不大 。利用VerilogHDL 完成该电路的设计,YCrCb取值分别为197 、 92、232 时,GRB输出(有延时)分别为186 、146 、255,与根据(1) 式计算的结果一致 。
2.2.2 超声波发射及接收部分
超声波测距中如果使用较高频率的超声波,则会因空气吸收较大而较快衰减,因此测量距离较短 。比如采用40kHz 的超声波,测距范围一般不超过5m 。由于空气对超声波的吸收与超声波频率的平方成正比,因此降低超声波的频率能增大测距范围 。但是如果频率太低, 测距的绝对误差较大[4] 。为了兼顾测距范围和精度,设计中采用40kHz 和25kHz 两种超声波测距 。测量原理是:先输出10个40kHz 的超声波脉冲,再输出8个25kHz 的超声波脉冲,由于高频超声波先发出,对于同一目标,其回波先到达 CPU,因此对于近距离的目标,首先用高频超声波探测,测量绝对误差较小;对于远处的目标, 由于高频超声波被空气吸收而大幅衰减, 所以回波只有低频超声波,此时测量绝对误差稍大,但因测距范围大因此仍可接受 。接收到的超声波信号经放大、比较等处理后送给NiosII 的PIO 口,使PIO口产生中断,通过执行中断服务程序获取超声波传播时间,再根据测得的环境温度计算出障碍物的距离,由连续两次测量情况计算出相对速度 。这里仅给出25kHz 超声波发射和接收电路,如图3所示 。
【基于SOPC技能的车辆电子后视镜系统设计】 预知更多有关后视镜精彩资料的请右戳:http://www.elecfans.com/zhuanti/houshijing.html

    推荐阅读