二重积分极坐标r的范围怎么确定


二重积分极坐标r的范围是从y等于x的平方 , 到x=1 。该区域是在射线x轴与y=x内 , 在该区域内 , 从原点出发 , 穿入、穿出该区域所遇到的曲线 , 就是r的上下限范围 。
【二重积分极坐标r的范围怎么确定】极坐标属于二维坐标系统 , 创始人是牛顿 , 主要应用于数学领域 。极坐标是指在平面内取一个定点O , 叫极点 , 引一条射线Ox , 叫做极轴 , 再选定一个长度单位和角度的正方向(通常取逆时针方向) 。对于平面内任何一点M , 用ρ表示线段OM的长度(有时也用r表示) , θ表示从Ox到OM的角度 , ρ叫做点M的极径 , θ叫做点M的极角 , 有序数对(ρ,θ)就叫点M的极坐标 , 这样建立的坐标系叫做极坐标系 。通常情况下 , M的极径坐标单位为1(长度单位) , 极角坐标单位为rad(或°) 。

    推荐阅读