设备EMI问题的经典分析
我们在谈到电子产品&设备的EMC问题的时候,EMC的三要素已经成为了我们的行动大纲;EMC三要素:干扰源-耦合路径-敏感设备;从理论上三要素如果解决处理好任意一个因素就构不成干扰或骚扰的问题;
EMC=EMI+EMS;对于EMS的三要素:干扰源(比如外部施加EFT,ESD,SURGE)通过传递路径(耦合路径)到我们的敏感电路产生噪声干扰;出现电子产品&设备的功能及性能的问题!
对于EMI的三要素:骚扰源(内部电路的du/dt(电压突变)&di/dt(电流突变))通过传递路径到等效天线的模型被我们的EMI的测试接收机接收;就形成了我们的EMI数据-必须达到无线电通信限值的要求!
我的EMI的理论是先分析再设计;实现性价比化原则!如下图:
【设备EMI问题的经典分析】
通过上图我从EMI的正向设计进行了系统的讲述:对电子产品&设备首先;
A.确认有哪些噪声源;
B.分析噪声源的特性;相关资料可以通过网络搜索作者名字或观看;(我的理论:先分析再设计;了解噪声源头特性是关键)!
C.确认噪声源的传递路径;这也是我们大多数工程师处理EMI-Issue时的着手点;(处理的手段和方法);EMI的耦合路径:感性耦合;容性耦合;传导耦合;辐射耦合!
D.对上述的结果进行分析确认后;就会有化的设计!
EMI骚扰的以下几种路径:(总的EMI的耦合路径进行分析)
对于空间耦合(辐射耦合)和传导耦合,大家都比较好理解;
辐射耦合:比如时钟源靠近端子连接线就会发生辐射耦合;
传导耦合:比如电子线路中有交叉的走线回路及关联线路就会发生传导耦合;
在实际中我们还有10%的EMI的问题也是众多设计师们没有注意的问题!从而要从PCB的分析来入手!!分析框图结构如下:
1.感性耦合路径问题
注意电路中的感性元件:
电感(输入&输出差模,共模电感,PFC电感,BUCK-L,BOOST-L…)及变压器等等;这些器件的位置放置及PCB走线都会带来EMI-Issue.
2.容性耦合路径问题
注意电路中任意相近的两根电流导线都会存在分布电容耦合:PCB走线 及 连接线等等;
我通过下面的原理分析框图来进行详细的说明;后面再给出我碰到的实际进行参考-分析电子产品&设备中的感性耦合与容性耦合问题;
上面的原理路径示意框图设计到的信息非常广,可以延伸到不同的电源拓扑结构;涉及到系统的传导理论,辐射理论;如果上面的电路你就当做是标准的PFC大功率应用电路;这时候你就会考虑30MHZ-300MHZ的骚扰功率的问题!如果电路结构前级输入是低压的交流输入(例如12VAC)这个电路可以是标准的升压(BOOST)电路结构;改变一下电感,开关MOS及输出二极管的位置;这个电路就可以变成高压或中低压的降压(BUCK)电路;也就是说这类电路的应用在EMI的问题表现及处理上都可使用同样的等效结构;处理EMI的问题就非常类同了 。
A.在上面的电路结构中电感回路及输出回路比较优化,并且和交流输入有足够的距离时;如果有EMI的问题请参考《开关电源:EMC的分析与设计》快速设计理论方案!
B.我在进行企业内训时就出现实际的特别;EMI传导设计-中高频部分优化我们共模滤波器没有明显的效果;分析框图结构如下:
推荐阅读
- 共模噪声对EMI的影响
- 五招解决夏日家中潮湿问题
- 三星Exynos1080跑分出炉,年内将问世
- 如何降低开关电源电路EMI
- 卫浴防水注意九大问题
- 防盗门常见问题及解决方法
- 如何获得符合 EMI 标准的电源?
- 想要健康长寿!你考虑过风水问题吗?
- 一文搞清楚开关电源设计损耗问题
- 装修准备需注意哪些问题?