值域怎么求,值与计算( 二 )
常见函数值域:
y=kx+b (k≠0)的值域为R
y=k/x 的值域为(-∞,0)∪(0,+∞)
y=√x的值域为x≥0
y=ax^2+bx+c 当a>0时,值域为 [4ac-b^2/4a,+∞) ;
当a<0时,值域为(-∞,4ac-b^2/4a]
y=a^x 的值域为 (0,+∞)
y=lgx的值域为R
参考资料:
怎样求函数的值域??? 1.观察法
用于简单的解析式 。
y=1-√x≤1,值域(-∞, 1]
y=(1+x)/(1-x)=2/(1-x)-1≠-1,值域(-∞,-1)∪(-1,+∞).
2.配方法
多用于二次(型)函数 。
y=x^2-4x+3=(x-2)^2-1≥-1,值域[-1, +∞)
y=e^2x-4e^x-3=(e^x-2)^2-7≥-7,值域[-7,+∞)
3. 换元法
多用于复合型函数 。
通过换元,使高次函数低次化,分式函数整式化,无理函数有理化,超越函数代数以方便求值域 。
特别注意中间变量(新量)的变化范围 。
4. 不等式法
用不等式的基本性质,也是求值域的常用方法 。
y=(e^x+1)/(e^x-1), (0<x<1).
0<x<1,
1<e^x<e, 0<e^x-1<e-1,
1/(e^x-1)>1/(e-1),
y=1+2/(e^x-1)>1+2/(e-1).值域(1+2/(e-1),+∞).
5. 最值法
如果函数f(x)存在最大值M和最小值m.那么值域为[m,M].
因此,求值域的方法与求最值的方法是相通的.
6. 反函数法
有的又叫反解法.
函数和它的反函数的定义域与值域互换.
如果一个函数的值域不易求,而它的反函数的定义域易求.那么,我们通过求后者而得出前者.
7. 单调性法
若f(x)在定义域[a, b]上是增函数,则值域为[f(a), f(b)].减函数则值域为[f(b),f(a)]
怎么求值域〉? 函数经典定义中,因变量的取值范围叫做这个函数的值域,在函数现代定义中是指定义域中所有元素在某个对应法则下对应的所有的象所组成的集合 。 即{y∣y=f(x),x∈D}
常见函数值域:
y=kx+b (k≠0)的值域为R
y=k/x 的值域为(-∞,0)∪(0,+∞)
y=√x的值域为x≥0
y=ax^2+bx+c 当a>0时,值域为 [4ac-b^2/4a,+∞) ;
当a<0时,值域为(-∞,4ac-b^2/4a]
y=a^x 的值域为 (0,+∞)
【值域怎么求,值与计算】y=lgx的值域为R
扩展资料
在解决问题的过程中,数学家往往不是直接解决原问题,而是对问题进行变形、转化,直至把它化归为某个(些)已经解决的问题,或容易解决的问题 。
把所要解决的问题,经过某种变化,使之归结为另一个问题*,再通过问题*求解,把的解得结果作用于原有问题,从而使原有问题得解,这种解决问题的方法,我们称之为化归法;
解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法 。 换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理 。 换元法又称辅助元素法、变量代换法 。
通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来 。 或者变为熟悉的形式,把复杂的计算和推证简化 。 它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用 。
例如在分解(x2+x+1)(x2+x+2)-12时,可以令y=x2+x,则 原式=(y+1)(y+2)-12 =y2+3y+2-12=y2+3y-10 =(y+5)(y-2) =(x2+x+5)(x2+x-2) =(x2+x+5)(x+2)(x-1). 例2,(x+5)+(y-4)=8 (x+5)-(y-4)=4 令x+5=m,y-4=n 原方程可写为 m+n=8 m-n=4 解得m=6,n=2 所以x+5=6,y-4=2 所以x=1,y=6 注意:换元后勿忘还原 。
利用函数和他的反函数定义域与值域的互逆关系,通过求反函数的定义域,得到原函数的值域;
推荐阅读
- 拉布拉多怎么训练,室内养拉布拉多太味了
- 美团怎么加盟,送外卖快速找到地址技巧
- 左手发麻是怎么回事,光左手麻怎么回事
- 怎么关闭开发者选项,如何取消开发者选项
- 体脂怎么测,怎么测体脂率
- 地漏怎么安装,卫生间地漏的正确安装方法
- 普通话考试怎么报名,自己怎么网上报名考普通话
- 油条怎么炸,油条怎么炸视频
- 遇到坏人怎么办,遇到坏事怎么办
- 怎么测体脂,BMI计算公式