无理数符号 “无理数”用符号怎么表示?



无理数 = R – Q无理数符号,因此数学家没有定义无理数的符号 。
1、无理数,也称为无限不循环小数,不能写作两整数之比 。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环 。常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等 。无理数的另一特征是无限的连分数表达式 。无理数最早由毕达哥拉斯学派弟子希伯索斯发现 。
2、在数学中,无理数是所有不是有理数字的实数,后者是由整数的比率(或分数)构成的数字 。当两个线段的长度比是无理数时,线段也被描述为不可比较的,这意味着它们不能“测量”,即没有长度(“度量”) 。
3、常见的无理数有:圆周长与其直径的比值,欧拉数e,黄金比例φ等等 。可以看出,无理数在位置数字系统中表示(例如,以十进制数字或任何其他自然基础表示)不会终止,也不会重复,即不包含数字的子序列 。
无理数 = R – Q,因此数学家没有定义无理数的符号 。
1、无理数,也称为无限不循环小数,不能写作两整数之比 。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环 。常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等 。无理数的另一特征是无限的连分数表达式 。无理数最早由毕达哥拉斯学派弟子希伯索斯发现 。
2、在数学中,无理数是所有不是有理数字的实数,后者是由整数的比率(或分数)构成的数字 。当两个线段的长度比是无理数时,线段也被描述为不可比较的,这意味着它们不能“测量”,即没有长度(“度量”) 。3、常见的无理数有:圆周长与其直径的比值,欧拉数e,黄金比例φ等等 。可以看出,无理数在位置数字系统中表示(例如,以十进制数字或任何其他自然基础表示)不会终止,也不会重复,即不包含数字的子序列 。
无理数集CrQ,实数集R,有理数集Q 。无理数,也称为无限不循环小数,不能写作两整数之比 。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环 。常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等 。无理数的另一特征是无限的连分数表达式 。无理数最早由毕达哥拉斯学派弟子希伯索斯发现 。无理数也可以通过非终止的连续分数来处理 。而有理数由所有分数,整数组成,总能写成整数、有限小数或无限循环小数,并且总能写成两整数之比,如21/7等 。
不妨列一个样本足够的清单,看看有什么规律 。然后分析她的无理数性质 。

无理数符号 “无理数”用符号怎么表示?

文章插图
无理数符号 “无理数”用符号怎么表示?

文章插图
无理数符号 “无理数”用符号怎么表示?

文章插图
无理数符号 “无理数”用符号怎么表示?

文章插图
无理数符号 “无理数”用符号怎么表示?

文章插图
样本清单如下设f(n)=lim (1+1/n)^n,n=1,2,3…∞
f(1)=(2/1)^1=2
f(2)=(3/2)^2=2.25,f(2)-f(1)=0.25
f(3)=(4/3)^3≈2.35,f(3)-f(2)=0.10
f(4)=(5/4)^4≈2.44,f(4)-f(3)=0.09
f(5)=(6/5)^5≈2.49,f(5)-f(4)=0.05
f(6)=(7/6)^6≈2.52,f(6)-f(5)=0.04
f(7)=(8/7)^7≈2.55,f(7)-f(6)=0.03
f(8)=(9/8)^8≈2.57,f(8)-f(7)=0.02
f(9)=(10/9)^9≈2.58,f(9)-f(8)=0.01
……
f(n→∞)=((n+1)/n)^n=2.718…=e,Δf→0
从清单看出的几个规律规律一:f(n)=lim(1+1/n)^n中的1是单位圆半径,f(1)=2,是单位圆的直径,外展的基数 。
规律二:f(1),f(2)…f(n)都是正分数的有理数 。
规律三:自然函数f(n)的增量Δf,或梯度▽×f,越来越小,直至△f→0 。f(n)是有界函数 。
没完没了却终有缘,藏的什么天机?
例如,电磁波长途旅行,光量子不断衰减降频,密度在慢慢消减,体积膨胀终有限,最终变成真空场量子 。
为什么把e叫自然常数?自然在什么地方?自然的本质究竟是什么?
规律四:f(n→∞)=e 。e是含有无限不循环的小数 。反而成了无理数 。
初步的探讨与个人意见命题之一:无数个除得尽的有理数之积,依然是有理数 。
命题之二:无数个除不尽的有理数之积,反而是无理数 。
命题之三:任意一个有理数,可以是若干除得尽的有理数之积 。
命题之四:任意一个无理数,可以是若干除不尽的有理数之积 。
以上当否,请大家发表自己的看法 。
【无理数符号 “无理数”用符号怎么表示?】好了,本答stop here 。请关注物理新视野,共同切磋物理逻辑与中英双语的疑难问题 。

    推荐阅读